UP | HOME

Table of Contents

Measurement of Piezoelectric Amplifiers

Table of ContentsClose

Note

The following two voltage amplifiers are tested:

The piezoelectric actuator under test is an APA95ML from Cedrat technology (doc). It contains three stacks with a capacitance of 5μF each that can be connected independently to the amplifier.

This document is divided into the following sections:

1 Effect of a change of capacitance

1.1 Cedrat Technology

Load Data

Copy
piezo1 = load('cedrat_la75b_med_1_stack.mat', 't', 'V_in', 'V_out'); piezo2 = load('cedrat_la75b_med_2_stack.mat', 't', 'V_in', 'V_out'); piezo3 = load('cedrat_la75b_med_3_stack.mat', 't', 'V_in', 'V_out');

Compute Coherence and Transfer functions

Copy
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_1, f] = tfestimate(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [co_1, ~] = mscohere(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [tf_2, ~] = tfestimate(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [co_2, ~] = mscohere(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [tf_3, ~] = tfestimate(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts); [co_3, ~] = mscohere(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);

We remove the phase delay due to the time delay of the ADC/DAC:

Copy
angle_delay = 180/pi*angle(squeeze(freqresp(exp(-s*Ts), f, 'Hz')));

change_capa_cedrat.png

Figure 1: Effect of a change of the piezo capacitance on the Amplifier transfer function

1.2 PI

Copy
piezo1 = load('pi_505_high.mat', 't', 'V_in', 'V_out'); piezo2 = load('pi_505_high_2_stacks.mat', 't', 'V_in', 'V_out'); piezo3 = load('pi_505_high_3_stacks.mat', 't', 'V_in', 'V_out');
Copy
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_1, f] = tfestimate(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [co_1, ~] = mscohere(piezo1.V_in, piezo1.V_out, win, [], [], 1/Ts); [tf_2, ~] = tfestimate(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [co_2, ~] = mscohere(piezo2.V_in, piezo2.V_out, win, [], [], 1/Ts); [tf_3, ~] = tfestimate(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts); [co_3, ~] = mscohere(piezo3.V_in, piezo3.V_out, win, [], [], 1/Ts);

We remove the phase delay due to the time delay of the ADC/DAC:

Copy
angle_delay = 180/pi*angle(squeeze(freqresp(exp(-s*Ts), f, 'Hz')));

change_capa_pi.png

Figure 2: Effect of a change of the piezo capacitance on the Amplifier transfer function

2 Effect of a change in Voltage level

2.1 Cedrat Technology

Copy
hi = load('cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out'); me = load('cedrat_la75b_med_1_stack.mat', 't', 'V_in', 'V_out'); lo = load('cedrat_la75b_low_1_stack.mat', 't', 'V_in', 'V_out');
Copy
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_hi, f] = tfestimate(hi.V_in, hi.V_out, win, [], [], 1/Ts); [co_hi, ~] = mscohere(hi.V_in, hi.V_out, win, [], [], 1/Ts); [tf_me, ~] = tfestimate(me.V_in, me.V_out, win, [], [], 1/Ts); [co_me, ~] = mscohere(me.V_in, me.V_out, win, [], [], 1/Ts); [tf_lo, ~] = tfestimate(lo.V_in, lo.V_out, win, [], [], 1/Ts); [co_lo, ~] = mscohere(lo.V_in, lo.V_out, win, [], [], 1/Ts);

We remove the phase delay due to the time delay of the ADC/DAC:

Copy
angle_delay = 180/pi*angle(squeeze(freqresp(exp(-s*Ts), f, 'Hz')));

change_level_cedrat.png

Figure 3: Effect of a change of voltage level on the Amplifier transfer function

2.2 PI

Copy
hi = load('pi_505_high.mat', 't', 'V_in', 'V_out'); lo = load('pi_505_low.mat', 't', 'V_in', 'V_out');
Copy
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_hi, f] = tfestimate(hi.V_in, hi.V_out, win, [], [], 1/Ts); [co_hi, ~] = mscohere(hi.V_in, hi.V_out, win, [], [], 1/Ts); [tf_lo, ~] = tfestimate(lo.V_in, lo.V_out, win, [], [], 1/Ts); [co_lo, ~] = mscohere(lo.V_in, lo.V_out, win, [], [], 1/Ts);

change_level_pi.png

Figure 4: Effect of a change of voltage level on the Amplifier transfer function

3 Comparison PI / Cedrat

3.1 Results

Copy
ce_results = load('cedrat_la75b_high_1_stack.mat', 't', 'V_in', 'V_out'); pi_results = load('pi_505_high.mat', 't', 'V_in', 'V_out');
Copy
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_ce, f] = tfestimate(ce_results.V_in, ce_results.V_out, win, [], [], 1/Ts); [tf_pi, ~] = tfestimate(pi_results.V_in, pi_results.V_out, win, [], [], 1/Ts);

We remove the phase delay due to the time delay of the ADC/DAC:

Copy
angle_delay = 180/pi*angle(squeeze(freqresp(exp(-s*Ts), f, 'Hz')));

tf_amplifiers_comp.png

Figure 5: Comparison of the two Amplifier transfer functions

4 Impedance Measurement

The goal is to experimentally measure the output impedance of the voltage amplifiers.

To do so, the output voltage is first measure without any load (V). It is then measure when a 10Ohm load is used (V).

The load (R=10Ω) and the internal resistor (Ri) form a voltage divider, and thus: V=RR+RiV

From the two values of voltage, the internal resistor value can be computed: Ri=RVVV

4.1 Cedrat Technology

4.1.1 Compute Impedance

Copy
R = 10; % Resistive Load used [Ohm] V = 0.998; % Output Voltage without any load [V] Vp = 0.912; % Output Voltage with resistice load [V]
Copy
R * (V - Vp)/Vp;
0.94298
Copy
R = 47; % Resistive Load used [Ohm] V = 4.960; % Output Voltage without any load [V] Vp = 4.874; % Output Voltage with resistice load [V]
Copy
R * (V - Vp)/Vp;
0.8293

4.1.2 Effect of Impedance on the phase drop

Copy
C_1 = 5e-6; % Capacitance in [F] C_2 = 10e-6; % Capacitance in [F] C_3 = 15e-6; % Capacitance in [F] Ri = R * (V - Vp)/Vp; % Internal resistance [Ohm] G0 = 20; G_1 = G0/(1+Ri*C_1*s); G_2 = G0/(1+Ri*C_2*s); G_3 = G0/(1+Ri*C_3*s);

change_capa_cedrat.png

Figure 6: Effect of a change of the piezo capacitance on the Amplifier transfer function

4.2 PI

Copy
R = 10; % Resistive Load used [Ohm] V = 1.059; % Output Voltage without any load [V] Vp = 0.828; % Output Voltage with resistice load [V]
Copy
R * (V - Vp)/Vp
2.7899
Copy
R = 10; % Resistive Load used [Ohm] V = 2.092; % Output Voltage without any load [V] Vp = 1.637; % Output Voltage with resistice load [V]
Copy
R * (V - Vp)/Vp
2.7795

5 Effect of filters configuration on the PI-E505 dynamics

5.1 PI

Three measurements are done:

  • Slew Rate limitation at maximum
  • Slew Rate limitation at minimum
  • Notch Filter at maximum frequency
Copy
pi_sr_min = load('pi_slew_rate_min.mat'); pi_sr_max = load('pi_slew_rate_max.mat'); pi_sr_max_notch = load('pi_slew_rate_max_notch_high.mat'); pi_sr_load = load('pi_slew_rate_max_notch_high_2stacks.mat');
Copy
Ts = 1e-4; win = hann(ceil(0.1/Ts)); [tf_sr_min, f] = tfestimate(pi_sr_min.V_in, pi_sr_min.V_out, win, [], [], 1/Ts); [tf_sr_max, ~] = tfestimate(pi_sr_max.V_in, pi_sr_max.V_out, win, [], [], 1/Ts); [tf_sr_max_notch, ~] = tfestimate(pi_sr_max_notch.V_in, pi_sr_max_notch.V_out, win, [], [], 1/Ts); [tf_sr_load, ~] = tfestimate(pi_sr_load.V_in, pi_sr_load.V_out, win, [], [], 1/Ts);
Copy
angle_delay = 180/pi*angle(squeeze(freqresp(exp(-s*Ts), f, 'Hz')));

pi_slew_rate_notch.png

Figure 7: Effect of a change in the slew rate limitation and notch filter

5.2 Transfer function of the Voltage Amplifier

The identified transfer function still seems to match the one of a notch filter at 5kHz.

Copy
w_nf = 2*pi*5e3; % Notch Filter Frequency [rad/s] G = 10.5*(s^2 + 2*w_nf*0.12*s + w_nf^2)/(s^2 + 2*w_nf*s + w_nf^2);

5.3 With Load

Copy
R = 2.78; % Output Impedance [Ohm] C = 9e-6; % Load capacitance [F] G_amp = 10/(1 + s*R*C);

Author: Dehaeze Thomas

Created: 2020-11-12 jeu. 10:11