Stewart Platform - Vibration Isolation
Table of ContentsClose
1 HAC-LAC (Cascade) Control - Integral Control
1.1 Introduction
In this section, we wish to study the use of the High Authority Control - Low Authority Control (HAC-LAC) architecture on the Stewart platform.
The control architectures are shown in Figures 1 and 2.
First, the LAC loop is closed (the LAC control is described here), and then the HAC controller is designed and the outer loop is closed.
Figure 1: HAC-LAC architecture with IFF
Figure 2: HAC-LAC architecture with DVF
1.2 Initialization
We first initialize the Stewart platform.
Copystewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame
Copyground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');
1.3 Identification
We identify the transfer function from the actuator forces
- Open Loop plant
- Already damped plant using Integral Force Feedback
- Already damped plant using Direct velocity feedback
1.3.1 HAC - Without LAC
Copycontroller = initializeController('type', 'open-loop');
Copy%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_ol = linearize(mdl, io); G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
1.3.2 HAC - IFF
Copycontroller = initializeController('type', 'iff'); K_iff = -(1e4/s)*eye(6);
Copy%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_iff = linearize(mdl, io); G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
1.3.3 HAC - DVF
Copycontroller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
Copy%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
1.4 Control Architecture
We use the Jacobian to express the actuator forces in the cartesian frame, and thus we obtain the transfer functions from
CopyGc_ol = minreal(G_ol)/stewart.kinematics.J'; Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_iff = minreal(G_iff)/stewart.kinematics.J'; Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
We then design a controller based on the transfer functions from
1.6 HAC - DVF
1.6.1 Plant
1.6.2 Controller Design
We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover.
Copywc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s;
Finally, we pre-multiply the diagonal controller by
CopyK_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
1.6.3 Obtained Performance
We identify the transmissibility and compliance of the system.
Copycontroller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance();
Copycontroller = initializeController('type', 'dvf'); [T_dvf, T_norm_dvf, ~] = computeTransmissibility(); [C_dvf, C_norm_dvf, ~] = computeCompliance();
Copycontroller = initializeController('type', 'hac-dvf'); [T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility(); [C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();
1.7 HAC - IFF
1.7.1 Plant
1.7.2 Controller Design
We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover.
Copywc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s;
Finally, we pre-multiply the diagonal controller by
CopyK_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
1.7.3 Obtained Performance
We identify the transmissibility and compliance of the system.
Copycontroller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance();
Copycontroller = initializeController('type', 'iff'); [T_iff, T_norm_iff, ~] = computeTransmissibility(); [C_iff, C_norm_iff, ~] = computeCompliance();
Copycontroller = initializeController('type', 'hac-iff'); [T_hac_iff, T_norm_hac_iff, ~] = computeTransmissibility(); [C_hac_iff, C_norm_hac_iff, ~] = computeCompliance();
2 MIMO Analysis
Let’s define the system as shown in figure 13.
Figure 13: General Control Architecture
Symbol | Meaning | |
---|---|---|
Exogenous Inputs | Ground motion | |
External Forces applied to the Payload | ||
Reference signal for tracking | ||
Exogenous Outputs | Absolute Motion of the Payload | |
Actuator Rate | ||
Sensed Outputs | Force Sensors in each leg | |
Measured displacement of each leg | ||
Absolute Motion of the Payload | ||
Control Signals | Actuator Inputs |
2.1 Initialization
We first initialize the Stewart platform.
Copystewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame
Copyground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');
2.2 Identification
2.2.1 HAC - Without LAC
Copycontroller = initializeController('type', 'open-loop');
Copy%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_ol = linearize(mdl, io); G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
2.2.2 HAC - DVF
Copycontroller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
Copy%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
2.2.3 Cartesian Frame
CopyGc_ol = minreal(G_ol)/stewart.kinematics.J'; Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
2.3 Singular Value Decomposition
Copyfreqs = logspace(1, 4, 1000); U_ol = zeros(6,6,length(freqs)); S_ol = zeros(6,length(freqs)); V_ol = zeros(6,6,length(freqs)); U_dvf = zeros(6,6,length(freqs)); S_dvf = zeros(6,length(freqs)); V_dvf = zeros(6,6,length(freqs)); for i = 1:length(freqs) [U,S,V] = svd(freqresp(Gc_ol, freqs(i), 'Hz')); U_ol(:,:,i) = U; S_ol(:,i) = diag(S); V_ol(:,:,i) = V; [U,S,V] = svd(freqresp(Gc_dvf, freqs(i), 'Hz')); U_dvf(:,:,i) = U; S_dvf(:,i) = diag(S); V_dvf(:,:,i) = V; end
3 Diagonal Control based on the damped plant
From (Skogestad and Postlethwaite 2007), a simple approach to multivariable control is the following two-step procedure:
- Design a pre-compensator
, which counteracts the interactions in the plant and results in a new shaped plant which is more diagonal and easier to control than the original plant . - Design a diagonal controller
for the shaped plant using methods similar to those for SISO systems.
The overall controller is then:
There are mainly three different cases:
- Dynamic decoupling:
is diagonal at all frequencies. For that we can choose and this is an inverse-based controller. - Steady-state decoupling:
is diagonal. This can be obtained by selecting . - Approximate decoupling at frequency
: is as diagonal as possible. Decoupling the system at is a good choice because the effect on performance of reducing interaction is normally greatest at this frequency.
3.1 Initialization
We first initialize the Stewart platform.
Copystewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame
Copyground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');
3.2 Identification
Copycontroller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
Copy%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
3.3 Steady State Decoupling
3.3.1 Pre-Compensator Design
We choose
CopyW1 = inv(freqresp(G_dvf, 0));
The (static) decoupled plant is
CopyGs = G_dvf*W1;
In the case of the Stewart platform, the pre-compensator for static decoupling is equal to
The static decoupled plant is schematic shown in Figure 14 and the bode plots of its diagonal elements are shown in Figure 15.
Figure 14: Static Decoupling of the Stewart platform
3.3.2 Diagonal Control Design
We design a diagonal controller
Copywc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.5; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Ks_dvf = diag(1./abs(diag(freqresp(1/s*Gs, wc)))) .* H_lead .* 1/s;
The overall controller is then
CopyK_hac_dvf = W1 * Ks_dvf;
Figure 16: Controller including the static decoupling matrix
3.3.3 Results
We identify the transmissibility and compliance of the Stewart platform under open-loop and closed-loop control.
Copycontroller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance();
Copycontroller = initializeController('type', 'hac-dvf'); [T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility(); [C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();
The results are shown in figure
3.4 Decoupling at Crossover
[ ]
Find a method for real approximation of a complex matrix
4 Time Domain Simulation
4.1 Initialization
We first initialize the Stewart platform.
Copystewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');
The rotation point of the ground is located at the origin of frame
Copyground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');
Copyload('./mat/motion_error_ol.mat', 'Eg')
4.2 HAC IFF
Copycontroller = initializeController('type', 'iff'); K_iff = -(1e4/s)*eye(6); %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_iff = linearize(mdl, io); G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; Gc_iff = minreal(G_iff)/stewart.kinematics.J'; Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Copywc = 2*pi*100; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s; K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
Copycontroller = initializeController('type', 'hac-iff');
4.3 HAC-DVF
Copycontroller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6); %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Copywc = 2*pi*100; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s; K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
Copycontroller = initializeController('type', 'hac-dvf');
4.4 Results
Copyfigure; subplot(1, 2, 1); hold on; plot(Eg.Time, Eg.Data(:, 1), 'DisplayName', 'X'); plot(Eg.Time, Eg.Data(:, 2), 'DisplayName', 'Y'); plot(Eg.Time, Eg.Data(:, 3), 'DisplayName', 'Z'); hold off; xlabel('Time [s]'); ylabel('Position error [m]'); legend(); subplot(1, 2, 2); hold on; plot(simout.Xa.Time, simout.Xa.Data(:, 1)); plot(simout.Xa.Time, simout.Xa.Data(:, 2)); plot(simout.Xa.Time, simout.Xa.Data(:, 3)); hold off; xlabel('Time [s]'); ylabel('Orientation error [rad]');
5 Functions
5.1 initializeController
: Initialize the Controller
Function description
Copyfunction [controller] = initializeController(args) % initializeController - Initialize the Controller % % Syntax: [] = initializeController(args) % % Inputs: % - args - Can have the following fields:
Optional Parameters
Copyarguments args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf', 'ref-track-L', 'ref-track-X', 'ref-track-hac-dvf'})} = 'open-loop' end
Structure initialization
Copycontroller = struct();
Add Type
Copyswitch args.type case 'open-loop' controller.type = 0; case 'iff' controller.type = 1; case 'dvf' controller.type = 2; case 'hac-iff' controller.type = 3; case 'hac-dvf' controller.type = 4; case 'ref-track-L' controller.type = 5; case 'ref-track-X' controller.type = 6; case 'ref-track-hac-dvf' controller.type = 7; end