UP | HOME

Table of Contents

Stewart Platform - Vibration Isolation

Table of ContentsClose

1 HAC-LAC (Cascade) Control - Integral Control

1.1 Introduction

In this section, we wish to study the use of the High Authority Control - Low Authority Control (HAC-LAC) architecture on the Stewart platform.

The control architectures are shown in Figures 1 and 2.

First, the LAC loop is closed (the LAC control is described here), and then the HAC controller is designed and the outer loop is closed.

control_arch_hac_iff.png

Figure 1: HAC-LAC architecture with IFF

control_arch_hac_dvf.png

Figure 2: HAC-LAC architecture with DVF

1.2 Initialization

We first initialize the Stewart platform.

Copy
stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');

The rotation point of the ground is located at the origin of frame {A}.

Copy
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');

1.3 Identification

We identify the transfer function from the actuator forces τ to the absolute displacement of the mobile platform X in three different cases:

  • Open Loop plant
  • Already damped plant using Integral Force Feedback
  • Already damped plant using Direct velocity feedback

1.3.1 HAC - Without LAC

Copy
controller = initializeController('type', 'open-loop');
Copy
%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_ol = linearize(mdl, io); G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};

1.3.2 HAC - IFF

Copy
controller = initializeController('type', 'iff'); K_iff = -(1e4/s)*eye(6);
Copy
%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_iff = linearize(mdl, io); G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};

1.3.3 HAC - DVF

Copy
controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
Copy
%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};

1.4 Control Architecture

We use the Jacobian to express the actuator forces in the cartesian frame, and thus we obtain the transfer functions from F to X.

Copy
Gc_ol = minreal(G_ol)/stewart.kinematics.J'; Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_iff = minreal(G_iff)/stewart.kinematics.J'; Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

We then design a controller based on the transfer functions from F to X, finally, we will pre-multiply the controller by JT.

1.5 6x6 Plant Comparison

hac_lac_coupling_jacobian.png

Figure 3: Norm of the transfer functions from F to X (png, pdf)

1.6 HAC - DVF

1.6.1 Plant

hac_lac_plant_dvf.png

Figure 4: Diagonal elements of the plant for HAC control when DVF is previously applied (png, pdf)

1.6.2 Controller Design

We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover.

Copy
wc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s;

hac_lac_loop_gain_dvf.png

Figure 5: Diagonal elements of the Loop Gain for the HAC control (png, pdf)

Finally, we pre-multiply the diagonal controller by JT prior implementation.

Copy
K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;

1.6.3 Obtained Performance

We identify the transmissibility and compliance of the system.

Copy
controller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance();
Copy
controller = initializeController('type', 'dvf'); [T_dvf, T_norm_dvf, ~] = computeTransmissibility(); [C_dvf, C_norm_dvf, ~] = computeCompliance();
Copy
controller = initializeController('type', 'hac-dvf'); [T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility(); [C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();

hac_lac_C_T_dvf.png

Figure 6: Obtained Compliance and Transmissibility (png, pdf)

1.7 HAC - IFF

1.7.1 Plant

hac_lac_plant_iff.png

Figure 7: Diagonal elements of the plant for HAC control when IFF is previously applied (png, pdf)

1.7.2 Controller Design

We design a diagonal controller with equal bandwidth for the 6 terms. The controller is a pure integrator with a small lead near the crossover.

Copy
wc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s;

hac_lac_loop_gain_iff.png

Figure 8: Diagonal elements of the Loop Gain for the HAC control (png, pdf)

Finally, we pre-multiply the diagonal controller by JT prior implementation.

Copy
K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;

1.7.3 Obtained Performance

We identify the transmissibility and compliance of the system.

Copy
controller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance();
Copy
controller = initializeController('type', 'iff'); [T_iff, T_norm_iff, ~] = computeTransmissibility(); [C_iff, C_norm_iff, ~] = computeCompliance();
Copy
controller = initializeController('type', 'hac-iff'); [T_hac_iff, T_norm_hac_iff, ~] = computeTransmissibility(); [C_hac_iff, C_norm_hac_iff, ~] = computeCompliance();

hac_lac_C_T_iff.png

Figure 9: Obtained Compliance and Transmissibility (png, pdf)

1.8 Comparison

hac_lac_C_full_comparison.png

Figure 10: Comparison of the norm of the Compliance matrices for the HAC-LAC architecture (png, pdf)

hac_lac_T_full_comparison.png

Figure 11: Comparison of the norm of the Transmissibility matrices for the HAC-LAC architecture (png, pdf)

hac_lac_C_T_comparison.png

Figure 12: Comparison of the Frobenius norm of the Compliance and Transmissibility for the HAC-LAC architecture with both IFF and DVF (png, pdf)

2 MIMO Analysis

Let’s define the system as shown in figure 13.

general_control_names.png

Figure 13: General Control Architecture

Table 1: Signals definition for the generalized plant
  Symbol Meaning
Exogenous Inputs Xw Ground motion
  Fd External Forces applied to the Payload
  r Reference signal for tracking
Exogenous Outputs X Absolute Motion of the Payload
  τ Actuator Rate
Sensed Outputs τm Force Sensors in each leg
  δLm Measured displacement of each leg
  X Absolute Motion of the Payload
Control Signals τ Actuator Inputs

2.1 Initialization

We first initialize the Stewart platform.

Copy
stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');

The rotation point of the ground is located at the origin of frame {A}.

Copy
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');

2.2 Identification

2.2.1 HAC - Without LAC

Copy
controller = initializeController('type', 'open-loop');
Copy
%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_ol = linearize(mdl, io); G_ol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_ol.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};

2.2.2 HAC - DVF

Copy
controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
Copy
%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};

2.2.3 Cartesian Frame

Copy
Gc_ol = minreal(G_ol)/stewart.kinematics.J'; Gc_ol.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

2.3 Singular Value Decomposition

Copy
freqs = logspace(1, 4, 1000); U_ol = zeros(6,6,length(freqs)); S_ol = zeros(6,length(freqs)); V_ol = zeros(6,6,length(freqs)); U_dvf = zeros(6,6,length(freqs)); S_dvf = zeros(6,length(freqs)); V_dvf = zeros(6,6,length(freqs)); for i = 1:length(freqs) [U,S,V] = svd(freqresp(Gc_ol, freqs(i), 'Hz')); U_ol(:,:,i) = U; S_ol(:,i) = diag(S); V_ol(:,:,i) = V; [U,S,V] = svd(freqresp(Gc_dvf, freqs(i), 'Hz')); U_dvf(:,:,i) = U; S_dvf(:,i) = diag(S); V_dvf(:,:,i) = V; end

3 Diagonal Control based on the damped plant

From (Skogestad and Postlethwaite 2007), a simple approach to multivariable control is the following two-step procedure:

  1. Design a pre-compensator W1, which counteracts the interactions in the plant and results in a new shaped plant GS(s)=G(s)W1(s) which is more diagonal and easier to control than the original plant G(s).
  2. Design a diagonal controller KS(s) for the shaped plant using methods similar to those for SISO systems.

The overall controller is then: K(s)=W1(s)Ks(s)

There are mainly three different cases:

  1. Dynamic decoupling: GS(s) is diagonal at all frequencies. For that we can choose W1(s)=G1(s) and this is an inverse-based controller.
  2. Steady-state decoupling: GS(0) is diagonal. This can be obtained by selecting W1(s)=G1(0).
  3. Approximate decoupling at frequency \w0: GS(j\w0) is as diagonal as possible. Decoupling the system at \w0 is a good choice because the effect on performance of reducing interaction is normally greatest at this frequency.

3.1 Initialization

We first initialize the Stewart platform.

Copy
stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');

The rotation point of the ground is located at the origin of frame {A}.

Copy
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');

3.2 Identification

Copy
controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6);
Copy
%% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};

3.3 Steady State Decoupling

3.3.1 Pre-Compensator Design

We choose W1=G1(0).

Copy
W1 = inv(freqresp(G_dvf, 0));

The (static) decoupled plant is Gs(s)=G(s)W1.

Copy
Gs = G_dvf*W1;

In the case of the Stewart platform, the pre-compensator for static decoupling is equal to KJ:

W1=(Xτ(s=0))1=(Xτ(s=0)JT)1=(CJT)1=(J1K1)1=KJ

The static decoupled plant is schematic shown in Figure 14 and the bode plots of its diagonal elements are shown in Figure 15.

control_arch_static_decoupling.png

Figure 14: Static Decoupling of the Stewart platform

static_decoupling_diagonal_plant.png

Figure 15: Bode plot of the diagonal elements of Gs(s) (png, pdf)

3.3.2 Diagonal Control Design

We design a diagonal controller Ks(s) that consist of a pure integrator and a lead around the crossover.

Copy
wc = 2*pi*300; % Wanted Bandwidth [rad/s] h = 1.5; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Ks_dvf = diag(1./abs(diag(freqresp(1/s*Gs, wc)))) .* H_lead .* 1/s;

The overall controller is then K(s)=W1Ks(s) as shown in Figure 16.

Copy
K_hac_dvf = W1 * Ks_dvf;

control_arch_static_decoupling_K.png

Figure 16: Controller including the static decoupling matrix

3.3.3 Results

We identify the transmissibility and compliance of the Stewart platform under open-loop and closed-loop control.

Copy
controller = initializeController('type', 'open-loop'); [T_ol, T_norm_ol, freqs] = computeTransmissibility(); [C_ol, C_norm_ol, ~] = computeCompliance();
Copy
controller = initializeController('type', 'hac-dvf'); [T_hac_dvf, T_norm_hac_dvf, ~] = computeTransmissibility(); [C_hac_dvf, C_norm_hac_dvf, ~] = computeCompliance();

The results are shown in figure

static_decoupling_C_T_frobenius_norm.png

Figure 17: Frobenius norm of the Compliance and transmissibility matrices (png, pdf)

3.4 Decoupling at Crossover

  • [ ] Find a method for real approximation of a complex matrix

4 Time Domain Simulation

4.1 Initialization

We first initialize the Stewart platform.

Copy
stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', 90e-3, 'MO_B', 45e-3); stewart = generateGeneralConfiguration(stewart); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = initializeCylindricalPlatforms(stewart); stewart = initializeCylindricalStruts(stewart); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeInertialSensor(stewart, 'type', 'none');

The rotation point of the ground is located at the origin of frame {A}.

Copy
ground = initializeGround('type', 'rigid', 'rot_point', stewart.platform_F.FO_A); payload = initializePayload('type', 'none');
Copy
load('./mat/motion_error_ol.mat', 'Eg')

4.2 HAC IFF

Copy
controller = initializeController('type', 'iff'); K_iff = -(1e4/s)*eye(6); %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_iff = linearize(mdl, io); G_iff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_iff.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; Gc_iff = minreal(G_iff)/stewart.kinematics.J'; Gc_iff.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Copy
wc = 2*pi*100; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_iff = diag(1./abs(diag(freqresp(1/s*Gc_iff, wc)))) .* H_lead .* 1/s; K_hac_iff = inv(stewart.kinematics.J')*Kd_iff;
Copy
controller = initializeController('type', 'hac-iff');

4.3 HAC-DVF

Copy
controller = initializeController('type', 'dvf'); K_dvf = -1e4*s/(1+s/2/pi/5000)*eye(6); %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Absolute Motion Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Absolute Sensor [m, rad] %% Run the linearization G_dvf = linearize(mdl, io); G_dvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G_dvf.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; Gc_dvf = minreal(G_dvf)/stewart.kinematics.J'; Gc_dvf.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Copy
wc = 2*pi*100; % Wanted Bandwidth [rad/s] h = 1.2; H_lead = 1/h*(1 + s/(wc/h))/(1 + s/(wc*h)); Kd_dvf = diag(1./abs(diag(freqresp(1/s*Gc_dvf, wc)))) .* H_lead .* 1/s; K_hac_dvf = inv(stewart.kinematics.J')*Kd_dvf;
Copy
controller = initializeController('type', 'hac-dvf');

4.4 Results

Copy
figure; subplot(1, 2, 1); hold on; plot(Eg.Time, Eg.Data(:, 1), 'DisplayName', 'X'); plot(Eg.Time, Eg.Data(:, 2), 'DisplayName', 'Y'); plot(Eg.Time, Eg.Data(:, 3), 'DisplayName', 'Z'); hold off; xlabel('Time [s]'); ylabel('Position error [m]'); legend(); subplot(1, 2, 2); hold on; plot(simout.Xa.Time, simout.Xa.Data(:, 1)); plot(simout.Xa.Time, simout.Xa.Data(:, 2)); plot(simout.Xa.Time, simout.Xa.Data(:, 3)); hold off; xlabel('Time [s]'); ylabel('Orientation error [rad]');

5 Functions

5.1 initializeController: Initialize the Controller

Function description

Copy
function [controller] = initializeController(args) % initializeController - Initialize the Controller % % Syntax: [] = initializeController(args) % % Inputs: % - args - Can have the following fields:

Optional Parameters

Copy
arguments args.type char {mustBeMember(args.type, {'open-loop', 'iff', 'dvf', 'hac-iff', 'hac-dvf', 'ref-track-L', 'ref-track-X', 'ref-track-hac-dvf'})} = 'open-loop' end

Structure initialization

Copy
controller = struct();

Add Type

Copy
switch args.type case 'open-loop' controller.type = 0; case 'iff' controller.type = 1; case 'dvf' controller.type = 2; case 'hac-iff' controller.type = 3; case 'hac-dvf' controller.type = 4; case 'ref-track-L' controller.type = 5; case 'ref-track-X' controller.type = 6; case 'ref-track-hac-dvf' controller.type = 7; end

Bibliography

Skogestad, Sigurd, and Ian Postlethwaite. 2007. Multivariable Feedback Control: Analysis and Design. John Wiley.

Author: Dehaeze Thomas

Created: 2021-01-08 ven. 15:52