UP | HOME

Table of Contents

Spindle Analysis

Table of ContentsClose

The report made by the PEL is accessible here.

1 Notes

setup_spindle.png

Figure 1: Measurement setup at the PEL lab

Date 2017-04-25
Location PEL Lab

The goal is to estimate all the error motions induced by the Spindle

2 Data Processing

Note

All the files (data and Matlab scripts) are accessible here.

2.1 Load Measurement Data

Copy
spindle_1rpm_table = readtable('./mat/10turns_1rpm_icepap.txt'); spindle_60rpm_table = readtable('./mat/10turns_60rpm_IcepapFIR.txt');
Copy
spindle_1rpm_table(1, :)
Copy
spindle_1rpm = table2array(spindle_1rpm_table); spindle_60rpm = table2array(spindle_60rpm_table);

2.2 Convert Signals from [deg] to [sec]

Copy
speed_1rpm = 360/60; % [deg/sec] spindle_1rpm(:, 1) = spindle_1rpm(:, 2)/speed_1rpm; % From position [deg] to time [s] speed_60rpm = 360/1; % [deg/sec] spindle_60rpm(:, 1) = spindle_60rpm(:, 2)/speed_60rpm; % From position [deg] to time [s]

2.3 Convert Signals

Copy
% scaling = 1/80000; % 80 mV/um scaling = 1e-6; % [um] to [m] spindle_1rpm(:, 3:end) = scaling*spindle_1rpm(:, 3:end); % [V] to [m] spindle_1rpm(:, 3:end) = spindle_1rpm(:, 3:end)-mean(spindle_1rpm(:, 3:end)); % Remove mean spindle_60rpm(:, 3:end) = scaling*spindle_60rpm(:, 3:end); % [V] to [m] spindle_60rpm(:, 3:end) = spindle_60rpm(:, 3:end)-mean(spindle_60rpm(:, 3:end)); % Remove mean

2.4 Ts and Fs for both measurements

Copy
Ts_1rpm = spindle_1rpm(end, 1)/(length(spindle_1rpm(:, 1))-1); Fs_1rpm = 1/Ts_1rpm; Ts_60rpm = spindle_60rpm(end, 1)/(length(spindle_60rpm(:, 1))-1); Fs_60rpm = 1/Ts_60rpm;

2.5 Find Noise of the ADC [mHz]

Copy
data = spindle_1rpm(:, 5); dV_1rpm = min(abs(data(1) - data(data ~= data(1)))); noise_1rpm = dV_1rpm/sqrt(12*Fs_1rpm/2); data = spindle_60rpm(:, 5); dV_60rpm = min(abs(data(50) - data(data ~= data(50)))); noise_60rpm = dV_60rpm/sqrt(12*Fs_60rpm/2);

2.6 Save all the data under spindle struct

Copy
spindle.rpm1.time = spindle_1rpm(:, 1); spindle.rpm1.deg = spindle_1rpm(:, 2); spindle.rpm1.Ts = Ts_1rpm; spindle.rpm1.Fs = 1/Ts_1rpm; spindle.rpm1.x = spindle_1rpm(:, 3); spindle.rpm1.y = spindle_1rpm(:, 4); spindle.rpm1.z = spindle_1rpm(:, 5); spindle.rpm1.adcn = noise_1rpm; spindle.rpm60.time = spindle_60rpm(:, 1); spindle.rpm60.deg = spindle_60rpm(:, 2); spindle.rpm60.Ts = Ts_60rpm; spindle.rpm60.Fs = 1/Ts_60rpm; spindle.rpm60.x = spindle_60rpm(:, 3); spindle.rpm60.y = spindle_60rpm(:, 4); spindle.rpm60.z = spindle_60rpm(:, 5); spindle.rpm60.adcn = noise_60rpm;

2.7 Compute Asynchronous data

Copy
for direction = {'x', 'y', 'z'} spindle.rpm1.([direction{1}, 'async']) = getAsynchronousError(spindle.rpm1.(direction{1}), 10); spindle.rpm60.([direction{1}, 'async']) = getAsynchronousError(spindle.rpm60.(direction{1}), 10); end

2.8 Save data

Copy
save('./mat/spindle_data.mat', 'spindle');

3 Time Domain Data

Note

All the files (data and Matlab scripts) are accessible here.

3.1 Load the processed data

Copy
load('./mat/spindle_data.mat', 'spindle');

3.2 Plot X-Y-Z position with respect to Time - 1rpm

Copy
figure; hold on; plot(spindle.rpm1.time, spindle.rpm1.x); plot(spindle.rpm1.time, spindle.rpm1.y); plot(spindle.rpm1.time, spindle.rpm1.z); hold off; xlabel('Time [s]'); ylabel('Amplitude [m]'); legend({'tx - 1rpm', 'ty - 1rpm', 'tz - 1rpm'});

spindle_xyz_1rpm.png

Figure 2: Raw time domain translation - 1rpm

3.3 Plot X-Y-Z position with respect to Time - 60rpm

The measurements for the spindle turning at 60rpm are shown figure 3.

Copy
figure; hold on; plot(spindle.rpm60.time, spindle.rpm60.x); plot(spindle.rpm60.time, spindle.rpm60.y); plot(spindle.rpm60.time, spindle.rpm60.z); hold off; xlabel('Time [s]'); ylabel('Amplitude [m]'); legend({'tx - 60rpm', 'ty - 60rpm', 'tz - 60rpm'});

spindle_xyz_60rpm.png

Figure 3: Raw time domain translation - 60rpm

3.4 Plot Synchronous and Asynchronous - 1rpm

Copy
figure; hold on; plot(spindle.rpm1.time, spindle.rpm1.x); plot(spindle.rpm1.time, spindle.rpm1.xasync); hold off; xlabel('Time [s]'); ylabel('Amplitude [m]'); legend({'tx - 1rpm - Sync', 'tx - 1rpm - Async'});

spindle_1rpm_sync_async.png

Figure 4: Comparison of the synchronous and asynchronous displacements - 1rpm

3.5 Plot Synchronous and Asynchronous - 60rpm

The data is split into its Synchronous and Asynchronous part (figure 5). We then use the Asynchronous part for the analysis in the following sections as we suppose that we can deal with the synchronous part with feedforward control.

Copy
figure; hold on; plot(spindle.rpm60.time, spindle.rpm60.x); plot(spindle.rpm60.time, spindle.rpm60.xasync); hold off; xlabel('Time [s]'); ylabel('Amplitude [m]'); legend({'tx - 60rpm - Sync', 'tx - 60rpm - Async'});

spindle_60rpm_sync_async.png

Figure 5: Comparison of the synchronous and asynchronous displacements - 60rpm

3.6 Plot X against Y

Copy
figure; hold on; plot(spindle.rpm1.x, spindle.rpm1.y); plot(spindle.rpm60.x, spindle.rpm60.y); hold off; xlabel('X Amplitude [m]'); ylabel('Y Amplitude [m]'); legend({'1rpm', '60rpm'});

spindle_xy_1_60rpm.png

Figure 6: Synchronous x-y displacement

3.7 Plot X against Y - Asynchronous

Copy
figure; hold on; plot(spindle.rpm1.xasync, spindle.rpm1.yasync); plot(spindle.rpm60.xasync, spindle.rpm60.yasync); hold off; xlabel('X Amplitude [m]'); ylabel('Y Amplitude [m]'); legend({'1rpm', '60rpm'});

spindle_xy_1_60_rpm_async.png

Figure 7: Asynchronous x-y displacement

4 Model of the spindle

Note

All the files (data and Matlab scripts) are accessible here.

4.1 Schematic of the model

The model of the spindle used is shown figure 8.

f is the perturbation force of the spindle and d is the measured displacement.

uniaxial-model-spindle.png

Figure 8: Model of the Spindle

4.2 Parameters

Copy
mg = 3000; % Mass of granite [kg] ms = 50; % Mass of Spindle [kg] kg = 1e8; % Stiffness of granite [N/m] ks = 5e7; % Stiffness of spindle [N/m]

4.3 Compute Mass and Stiffness Matrices

Copy
Mm = diag([ms, mg]); Km = diag([ks, ks+kg]) - diag(ks, -1) - diag(ks, 1);

4.4 Compute resonance frequencies

Copy
A = [zeros(size(Mm)) eye(size(Mm)) ; -Mm\Km zeros(size(Mm))]; eigA = imag(eigs(A))/2/pi; eigA = eigA(eigA>0); eigA = eigA(1:2);

4.5 From model_damping compute the Damping Matrix

Copy
modal_damping = 1e-5; ab = [0.5*eigA(1) 0.5/eigA(1) ; 0.5*eigA(2) 0.5/eigA(2)]\[modal_damping ; modal_damping]; Cm = ab(1)*Mm +ab(2)*Km;

4.6 Define inputs, outputs and state names

Copy
StateName = {... 'xs', ... % Displacement of Spindle [m] 'xg', ... % Displacement of Granite [m] 'vs', ... % Velocity of Spindle [m] 'vg', ... % Velocity of Granite [m] }; StateUnit = {'m', 'm', 'm/s', 'm/s'}; InputName = {... 'f' ... % Spindle Force [N] }; InputUnit = {'N'}; OutputName = {... 'd' ... % Displacement [m] }; OutputUnit = {'m'};

4.7 Define A, B and C matrices

Copy
% A Matrix A = [zeros(size(Mm)) eye(size(Mm)) ; ... -Mm\Km -Mm\Cm]; % B Matrix B_low = zeros(length(StateName), length(InputName)); B_low(strcmp(StateName,'vs'), strcmp(InputName,'f')) = 1; B_low(strcmp(StateName,'vg'), strcmp(InputName,'f')) = -1; B = blkdiag(zeros(length(StateName)/2), pinv(Mm))*B_low; % C Matrix C = zeros(length(OutputName), length(StateName)); C(strcmp(OutputName,'d'), strcmp(StateName,'xs')) = 1; C(strcmp(OutputName,'d'), strcmp(StateName,'xg')) = -1; % D Matrix D = zeros(length(OutputName), length(InputName));

4.8 Generate the State Space Model

Copy
sys = ss(A, B, C, D); sys.StateName = StateName; sys.StateUnit = StateUnit; sys.InputName = InputName; sys.InputUnit = InputUnit; sys.OutputName = OutputName; sys.OutputUnit = OutputUnit;

4.9 Bode Plot

The transfer function from a disturbance force f to the measured displacement d is shown figure 9.

Copy
freqs = logspace(-1, 3, 1000); figure; plot(freqs, abs(squeeze(freqresp(sys('d', 'f'), freqs, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');

spindle_f_to_d.png

Figure 9: Bode plot of the transfer function from f to d

4.10 Save the model

Copy
save('./mat/spindle_model.mat', 'sys');

5 Frequency Domain Data

Note

All the files (data and Matlab scripts) are accessible here.

5.1 Load the processed data and the model

Copy
load('./mat/spindle_data.mat', 'spindle'); load('./mat/spindle_model.mat', 'sys');

5.2 Compute the PSD

Copy
n_av = 4; % Number of average [pxx_1rpm, f_1rpm] = pwelch(spindle.rpm1.xasync, hanning(ceil(length(spindle.rpm1.xasync)/n_av)), [], [], spindle.rpm1.Fs); [pyy_1rpm, ~] = pwelch(spindle.rpm1.yasync, hanning(ceil(length(spindle.rpm1.yasync)/n_av)), [], [], spindle.rpm1.Fs); [pzz_1rpm, ~] = pwelch(spindle.rpm1.zasync, hanning(ceil(length(spindle.rpm1.zasync)/n_av)), [], [], spindle.rpm1.Fs); [pxx_60rpm, f_60rpm] = pwelch(spindle.rpm60.xasync, hanning(ceil(length(spindle.rpm60.xasync)/n_av)), [], [], spindle.rpm60.Fs); [pyy_60rpm, ~] = pwelch(spindle.rpm60.yasync, hanning(ceil(length(spindle.rpm60.yasync)/n_av)), [], [], spindle.rpm60.Fs); [pzz_60rpm, ~] = pwelch(spindle.rpm60.zasync, hanning(ceil(length(spindle.rpm60.zasync)/n_av)), [], [], spindle.rpm60.Fs);

5.3 Plot the computed PSD

The Amplitude Spectral Densities of the displacement of the spindle for the x, y and z directions are shown figure 11. They correspond to the Asynchronous part shown figure 5.

Copy
figure; hold on; plot(f_1rpm, (pxx_1rpm).^.5, 'DisplayName', '$P_{xx}$ - 1rpm'); plot(f_1rpm, (pyy_1rpm).^.5, 'DisplayName', '$P_{yy}$ - 1rpm'); plot(f_1rpm, (pzz_1rpm).^.5, 'DisplayName', '$P_{zz}$ - 1rpm'); % plot(f_1rpm, spindle.rpm1.adcn*ones(size(f_1rpm)), '--k', 'DisplayName', 'ADC - 1rpm'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); legend('Location', 'northeast'); xlim([f_1rpm(2), f_1rpm(end)]);

spindle_psd_xyz_1rpm.png

Figure 10: Power spectral density of the Asynchronous displacement - 1rpm

Copy
figure; hold on; plot(f_60rpm, (pxx_60rpm).^.5, 'DisplayName', '$P_{xx}$ - 60rpm'); plot(f_60rpm, (pyy_60rpm).^.5, 'DisplayName', '$P_{yy}$ - 60rpm'); plot(f_60rpm, (pzz_60rpm).^.5, 'DisplayName', '$P_{zz}$ - 60rpm'); % plot(f_60rpm, spindle.rpm60.adcn*ones(size(f_60rpm)), '--k', 'DisplayName', 'ADC - 60rpm'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); legend('Location', 'northeast'); xlim([f_60rpm(2), f_60rpm(end)]);

spindle_psd_xyz_60rpm.png

Figure 11: Power spectral density of the Asynchronous displacement - 60rpm

5.4 Compute the response of the model

Copy
Tfd = abs(squeeze(freqresp(sys('d', 'f'), f_60rpm, 'Hz')));

5.5 Plot the PSD of the Force using the model

Copy
figure; plot(f_60rpm, (pxx_60rpm.^.5)./Tfd, 'DisplayName', '$P_{xx}$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$N/\sqrt{Hz}$]'); xlim([f_60rpm(2), f_60rpm(end)]);

spindle_psd_f_60rpm.png

Figure 12: Power spectral density of the force - 60rpm

5.6 Estimated Shape of the PSD of the force

Copy
s = tf('s'); Wd_simple = 1e-8/(1+s/2/pi/0.5)/(1+s/2/pi/100); Wf_simple = Wd_simple/tf(sys('d', 'f')); TWf_simple = abs(squeeze(freqresp(Wf_simple, f_60rpm, 'Hz'))); % Wf = 0.48902*(s+327.9)*(s^2 + 109.6*s + 1.687e04)/((s^2 + 30.59*s + 8541)*(s^2 + 29.11*s + 3.268e04)); % Wf = 0.15788*(s+418.6)*(s+1697)^2*(s^2 + 124.3*s + 2.529e04)*(s^2 + 681.3*s + 9.018e05)/((s^2 + 23.03*s + 8916)*(s^2 + 33.85*s + 6.559e04)*(s^2 + 71.43*s + 4.283e05)*(s^2 + 40.64*s + 1.789e06)); Wf = (s+1697)^2*(s^2 + 114.5*s + 2.278e04)*(s^2 + 205.1*s + 1.627e05)*(s^2 + 285.8*s + 8.624e05)*(s+100)/((s+0.5)*3012*(s^2 + 23.03*s + 8916)*(s^2 + 17.07*s + 4.798e04)*(s^2 + 41.17*s + 4.347e05)*(s^2 + 78.99*s + 1.789e06)); TWf = abs(squeeze(freqresp(Wf, f_60rpm, 'Hz')));

5.7 PSD in [N]

Above 200Hz, the Amplitude Spectral Density seems dominated by noise coming from the electronics (charge amplifier, ADC, …). So we don’t know what is the frequency content of the force above that frequency. However, we assume that Pxx is decreasing with 1/f as it seems so be the case below 100Hz (figure 11).

We then fit the PSD of the displacement with a transfer function (figure 14).

Copy
figure; hold on; plot(f_60rpm, (pxx_60rpm.^.5)./Tfd, 'DisplayName', '$\sqrt{P_{xx}}/|T_{d/f}|$'); plot(f_60rpm, TWf, 'DisplayName', 'Wf'); plot(f_60rpm, TWf_simple, '-k', 'DisplayName', 'Wfs'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$N/\sqrt{Hz}$]'); xlim([f_60rpm(2), f_60rpm(end)]); legend('Location', 'northeast');

spindle_psd_f_comp_60rpm.png

Figure 13: Power spectral density of the force - 60rpm

5.8 PSD in [m]

To obtain the PSD of the force f that induce such displacement, we use the following formula: PSD(d)=|Td/f|PSD(f)

And so we have: PSD(f)=|Td/f|1PSD(d)

The obtain Power Spectral Density of the force is displayed figure 13.

Copy
figure; hold on; plot(f_60rpm, pxx_60rpm.^.5, 'DisplayName', '$\sqrt{P_{xx}}$'); plot(f_60rpm, TWf.*Tfd, 'DisplayName', '$|W_f|*|T_{d/f}|$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); xlim([f_60rpm(2), f_60rpm(end)]); legend('Location', 'northeast');

spindle_psd_d_comp_60rpm.png

Figure 14: Comparison of the power spectral density of the measured displacement and of the model

5.9 Compute the resulting RMS value [m]

Copy
figure; hold on; plot(f_60rpm, 1e9*cumtrapz(f_60rpm, (pxx_60rpm)).^.5, '--', 'DisplayName', 'Exp. Data'); plot(f_60rpm, 1e9*cumtrapz(f_60rpm, ((TWf.*Tfd).^2)).^.5, '--', 'DisplayName', 'Estimated'); hold off; set(gca, 'XScale', 'log'); xlabel('Frequency [Hz]'); ylabel('CPS [$nm$ rms]'); xlim([f_60rpm(2), f_60rpm(end)]); legend('Location', 'southeast');

spindle_cps_d_comp_60rpm.png

Figure 15: Cumulative Power Spectrum - 60rpm

5.10 Compute the resulting RMS value [m]

Copy
figure; hold on; plot(f_1rpm, 1e9*cumtrapz(f_1rpm, (pxx_1rpm)), '--', 'DisplayName', 'Exp. Data'); plot(f_1rpm, 1e9*(f_1rpm(end)-f_1rpm(1))/(length(f_1rpm)-1)*cumsum(pxx_1rpm), '--', 'DisplayName', 'Exp. Data'); hold off; set(gca, 'XScale', 'log'); xlabel('Frequency [Hz]'); ylabel('CPS [$nm$ rms]'); xlim([f_1rpm(2), f_1rpm(end)]); legend('Location', 'southeast');

spindle_cps_d_comp_1rpm.png

Figure 16: Cumulative Power Spectrum - 1rpm

6 Functions

6.1 getAsynchronousError

This Matlab function is accessible here.

Copy
function [Wxdec] = getAsynchronousError(data, NbTurn) %% L = length(data); res_per_rev = L/NbTurn; P = 0:(res_per_rev*NbTurn-1); Pos = P' * 360/res_per_rev; % Temperature correction x1 = myfit2(Pos, data); % Convert data to frequency domain and scale accordingly X2 = 2/(res_per_rev*NbTurn)*fft(x1); f2 = (0:L-1)./NbTurn; %upr -> once per revolution %% X2dec = zeros(size(X2)); % Get only the non integer data X2dec(mod(f2(:), 1) ~= 0) = X2(mod(f2(:), 1) ~= 0); Wxdec = real((res_per_rev*NbTurn)/2 * ifft(X2dec)); %% function Y = myfit2(x,y) A = [x ones(size(x))]\y; a = A(1); b = A(2); Y = y - (a*x + b); end end

Author: Dehaeze Thomas

Created: 2020-11-12 jeu. 10:30