UP | HOME

Table of Contents

Measurements

Table of ContentsClose

1 Experimental conditions

Date 2018-01-12
Sensors Geophones
Excitation Instrumented Hammer
Location Laboratory
Notes Unglued Granite
  • The granite is not glued to the floor
  • FS = 512Hz
  • Made by Marc Lesourd on the 12 of January 2018

Goal: Obtain better coherence at low frequency.

2 Measurements procedure

Geophones L-28LB geophones (table 1) are placed on

  • Marle
  • Tilt Stage
  • Top of Hexapod
Table 1: L-28LB Geophone characteristics
Natural Frequency [Hz] 4.5
Weight [g] 140
Sensitivity [V/(m/s)] 31.3

The structure is excited using an instrumented hammer with impacts on

  • Marble X-Y-Z
  • Hexapod X-Y-Z

3 Measurement Channels

Table 2: Description of each measurement channel
Ch. nb Element Location Direction
1 Hammer variable  
2 Geophone Marble X-Y-Z
3 Geophone Tilt stage X-Y-Z
4 Geophone Top of Hexapod X-Y-Z

4 Experiments

Table 3: Description of the location of direction of the excitation for each measurement
Meas. nb Location Direction
1 Marble X
2 Hexapod X
3 Marble Y
4 Hexapod Y
5 Marble Z
6 Hexapod Z

5 Data Analysis

5.1 Loading and pre-processing of the data

The Geophone sensitivity is defined below:

Copy
w0 = 4.5*2*pi; % [rad/s] ksi = 0.38; G0 = 31.3; % [V/(m/s)] G = G0*(s/w0)^2/((s/w0)^2 + 2*ksi*(s/w0) + 1); % [V/(m/s)]

We then:

  • load the data
  • add a minus sign when needed
  • integrate the signal to have displacement instead of velocity
  • scaled with the sensitivity of the Geophone
Copy
load('./raw_data/freq_frf.mat') % freq_frf w = j*2*pi*freq_frf; % j.omega in [rad/s] scaling = squeeze(freqresp(G, 2*pi*freq_frf))/G0; load('./raw_data/frf_marble_x.mat') % ReIm1 frf_marble_x = zeros(size(ReIm1, 1), 3); frf_marble_x(:, 1) = -ReIm1(:, 2)./w./scaling; % marble_x frf_marble_x(:, 2) = -ReIm1(:, 3)./w./scaling; % tilt_x frf_marble_x(:, 3) = -ReIm1(:, 4)./w./scaling; % hexa_x load('./raw_data/frf_hexa_x.mat') % ReIm2 frf_hexa_x = zeros(size(ReIm2, 1), 3); frf_hexa_x(:, 1) = -ReIm2(:, 2)./w./scaling; % marble_x frf_hexa_x(:, 2) = -ReIm2(:, 3)./w./scaling; % tilt_x frf_hexa_x(:, 3) = -ReIm2(:, 4)./w./scaling; % hexa_x load('./raw_data/frf_marble_y.mat') % ReIm3 frf_marble_y = zeros(size(ReIm3, 1), 3); frf_marble_y(:, 1) = -ReIm3(:, 2)./w./scaling; % marble_y frf_marble_y(:, 2) = -ReIm3(:, 3)./w./scaling; % tilt_y frf_marble_y(:, 3) = -ReIm3(:, 4)./w./scaling; % hexa_y load('./raw_data/frf_hexa_y.mat') % ReIm4 frf_hexa_y = zeros(size(ReIm4, 1), 3); frf_hexa_y(:, 1) = ReIm4(:, 2)./w./scaling; % marble_y frf_hexa_y(:, 2) = ReIm4(:, 3)./w./scaling; % tilt_y frf_hexa_y(:, 3) = ReIm4(:, 4)./w./scaling; % hexa_y load('./raw_data/frf_marble_z.mat') % ReIm5 frf_marble_z = zeros(size(ReIm5, 1), 3); frf_marble_z(:, 1) = ReIm5(:, 2)./w./scaling; % marble_z frf_marble_z(:, 2) = ReIm5(:, 3)./w./scaling; % tilt_z frf_marble_z(:, 3) = ReIm5(:, 4)./w./scaling; % hexa_z load('./raw_data/frf_hexa_z.mat') % ReIm6 frf_hexa_z = zeros(size(ReIm6, 1), 3); frf_hexa_z(:, 1) = ReIm6(:, 2)./w./scaling; % marble_z frf_hexa_z(:, 2) = ReIm6(:, 3)./w./scaling; % tilt_z frf_hexa_z(:, 3) = ReIm6(:, 4)./w./scaling; % hexa_z
Copy
load('./raw_data/coher_marble_x.mat') % coh1 coh_marble_x = zeros(size(coh1, 1), 3); coh_marble_x(:, 1) = coh1(:, 2); % marble_x coh_marble_x(:, 2) = coh1(:, 3); % tilt_x coh_marble_x(:, 3) = coh1(:, 4); % hexa_x load('./raw_data/coher_hexa_x.mat') % coh2 coh_hexa_x = zeros(size(coh2, 1), 3); coh_hexa_x(:, 1) = coh2(:, 2); % marble_x coh_hexa_x(:, 2) = coh2(:, 3); % tilt_x coh_hexa_x(:, 3) = coh2(:, 4); % hexa_x load('./raw_data/coher_marble_y.mat') % coh3 coh_marble_y = zeros(size(coh3, 1), 3); coh_marble_y(:, 1) = coh3(:, 2); % marble_y coh_marble_y(:, 2) = coh3(:, 3); % tilt_y coh_marble_y(:, 3) = coh3(:, 4); % hexa_y load('./raw_data/coher_hexa_y.mat') % coh4 coh_hexa_y = zeros(size(coh4, 1), 3); coh_hexa_y(:, 1) = coh4(:, 2); % marble_y coh_hexa_y(:, 2) = coh4(:, 3); % tilt_y coh_hexa_y(:, 3) = coh4(:, 4); % hexa_y load('./raw_data/coher_marble_z.mat') % coh5 coh_marble_z = zeros(size(coh5, 1), 3); coh_marble_z(:, 1) = coh5(:, 2); % marble_z coh_marble_z(:, 2) = coh5(:, 3); % tilt_z coh_marble_z(:, 3) = coh5(:, 4); % hexa_z load('./raw_data/coher_hexa_z.mat') % coh6 coh_hexa_z = zeros(size(coh6, 1), 3); coh_hexa_z(:, 1) = coh6(:, 2); % marble_z coh_hexa_z(:, 2) = coh6(:, 3); % tilt_z coh_hexa_z(:, 3) = coh6(:, 4); % hexa_z

5.2 X-direction FRF

marble_x_frf.png

Figure 1: Response to a force applied on the marble in the X direction

hexa_x_frf.png

Figure 2: Response to a force applied on the hexa in the X direction

5.3 Y-direction FRF

marble_y_frf.png

Figure 3: Response to a force applied on the marble in the Y direction

hexa_y_frf.png

Figure 4: Response to a force applied on the hexa in the Y direction

5.4 Z-direction FRF

marble_z_frf.png

Figure 5: Response to a force applied on the marble in the Z direction

hexa_z_frf.png

Figure 6: Response to a force applied on the hexa in the Z direction

5.5 Save the processed data

Finally, we save the processed data.

Copy
save('./data/id31_microstation_2018_01_12_frf.mat', ... 'freq_frf', ... 'frf_marble_x', ... 'frf_marble_y', ... 'frf_marble_z', ... 'frf_hexa_x', ... 'frf_hexa_y', ... 'frf_hexa_z'); save('./data/id31_microstation_2018_01_12_coh.mat', ... 'freq_frf', ... 'coh_marble_x', ... 'coh_marble_y', ... 'coh_marble_z', ... 'coh_hexa_x', ... 'coh_hexa_y', ... 'coh_hexa_z');

6 Results

Important

  • Resonances at 42Hz, 70Hz and 125Hz have been identified
  • The coherence is much better than when using accelerometers

Author: Dehaeze Thomas

Created: 2020-11-12 jeu. 10:26