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Abstract
This paper investigates the use of Integral Force Feedback (IFF) for the active damping of rotating mechanical
systems. Guaranteed stability, typical benefit of IFF, is lost as soon as the system is rotating due to gyroscopic
effects. To overcome this issue, two modifications of the classical IFF control scheme are proposed. The first
consists of slightly modifying the control law while the second consists of adding springs in parallel with the
force sensors. Conditions for stability and optimal parameters are derived. The results reveal that, despite
their different implementations, both modified IFF control scheme have almost identical damping authority
on suspension modes.

1 Introduction

There is an increasing need to reduce the undesirable vibration of many sensitive equipment. A common
method to reduce vibration is to mount the sensitive equipment on a suspended platform which attenuates the
vibrations above the frequency of the suspension modes. In order to further decrease the residual vibrations,
active damping can be used for reducing the magnification of the response in the vicinity of the resonances.

In [1], the Integral Force Feedback (IFF) control scheme has been proposed, where a force sensor, a force
actuator and an integral controller are used to directly augment the damping of a mechanical system. When
the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and
zeros which facilitate to guarantee the stability of the closed loop system [2].

However, when the platform is rotating, gyroscopic effects alter the system dynamics and IFF cannot be
applied as is. The purpose of this paper is to study how the IFF strategy can be adapted to deal with these
Gyroscopic effects.

The paper is structured as follows. Section 2 presents a simple model of a rotating suspended platform that
will be used throughout this study. Section 3 explains how the unconditional stability of IFF is lost due to
Gyroscopic effects induced by the rotation. Section 4 suggests a simple modification of the control law such
that damping can be added to the suspension modes in a robust way. Section 5 proposes to add springs in
parallel with the force sensors to regain the unconditional stability of IFF. Section 6 compares both proposed
modifications to the classical IFF in terms of damping authority and closed-loop system behavior.
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2 Dynamics of Rotating Platforms

In order to study how the rotation does affect the use of IFF, a model of a suspended platform on top of a
rotating stage is used. Figure 1 represents the model schematically which is the simplest in which gyroscopic
forces can be studied.
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Figure 1: Schematic of the studied System

The rotating stage is supposed to be ideal, meaning it induces a perfect rotation θ(t) = Ωt where Ω is the
rotational speed in rad s−1.

The suspended platform consists of two orthogonal actuators represented by three elements in parallel: a
spring with a stiffness k in N m−1, a dashpot with a damping coefficient c in N m−1 s and an ideal force
source Fu, Fv. A payload with a mass m in kg, representing the sensitive equipment, is mounted on the
(rotating) suspended platform.

Two reference frames are used: an inertial frame (~ix,~iy,~iz) and a uniform rotating frame (~iu,~iv,~iw) rigidly
fixed on top of the rotating stage with ~iw aligned with the rotation axis. The position of the payload is
represented by (du, dv, 0) expressed in the rotating frame.

To obtain the equations of motion for the system represented in Figure 1, the Lagrangian equations are used:

d

dt

(
∂L

∂q̇i

)
+
∂D

∂q̇i
− ∂L

∂qi
= Qi (1)

with L = T − V the Lagrangian, T the kinetic coenergy, V the potential energy, D the dissipation function,
and Qi the generalized force associated with the generalized variable

[
q1 q2

]
=
[
du dv

]
. The equation of

motion corresponding to the constant rotation in the (~ix,~iy) plane is disregarded as the motion is considered
to be imposed by the rotation stage.

T =
1

2
m

((
ḋu − Ωdv

)2
+
(
ḋv + Ωdu

)2
)
, V =

1

2
k
(
du

2 + dv
2
)
,

D =
1

2
c
(
ḋu

2 + ḋv
2
)
, Q1 = Fu, Q2 = Fv

(2)
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Substituting equations (2) into (1) for both generalized coordinates gives two coupled differential equations

md̈u + cḋu + (k −mΩ2)du = Fu + 2mΩḋv (3a)

md̈v + cḋv + (k−mΩ2
︸ ︷︷ ︸
Centrif.

)dv = Fv − 2mΩḋu︸ ︷︷ ︸
Coriolis

(3b)

The uniform rotation of the system induces two Gyroscopic effects as shown in (3):

• Centrifugal forces: that can been seen as added negative stiffness −mΩ2 along~iu and~iv
• Coriolis Forces: that couples the motion in the two orthogonal directions

To study the dynamics of the system, the differential equations of motions (3) are transformed in the Laplace
domain and the 2× 2 transfer function matrix Gd from

[
Fu Fv

]
to
[
du dv

]
is obtained

[
du
dv

]
= Gd

[
Fu
Fv

]
(4)

Gd =




ms2+cs+k−mΩ2

(ms2+cs+k−mΩ2)2+(2mΩs)2
2mΩs

(ms2+cs+k−mΩ2)2+(2mΩs)2

−2mΩs
(ms2+cs+k−mΩ2)2+(2mΩs)2

ms2+cs+k−mΩ2

(ms2+cs+k−mΩ2)2+(2mΩs)2


 (5)

To simplify the analysis, the undamped natural frequency ω0 and the damping ratio ξ are used

ω0 =

√
k

m
in rad s−1, ξ =

c

2
√
km

(6)

The transfer function matrix Gd becomes equal to

Gd =
1

k




s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

2 Ω
ω0

s
ω0(

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

−2 Ω
ω0

s
ω0(

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2




(7)

For all further numerical analysis in this study, we consider ω0 = 1 rad s−1, k = 1 N m−1 and ξ = 0.025 =
2.5 %. Even though no system with such parameters will be encountered in practice, conclusions can be
drawn relative to these parameters such that they can be generalized to any other set of parameters.

The poles of Gd are the complex solutions p of

(
p2

ω0
2

+ 2ξ
p

ω0
+ 1− Ω2

ω0
2

)2

+

(
2

Ω

ω0

p

ω0

)2

= 0 (8)

Supposing small damping (ξ � 1), two pairs of complex conjugate poles are obtained:

p+ = −ξω0

(
1 +

Ω

ω0

)
± jω0

(
1 +

Ω

ω0

)
(9a)

p− = −ξω0

(
1− Ω

ω0

)
± jω0

(
1− Ω

ω0

)
(9b)

The real part and complex part of these two pairs of complex conjugate poles are represented in Figure 2 as
a function of the rotational speed Ω. As the rotational speed increases, p+ goes to higher frequencies and p−
to lower frequencies. The system becomes unstable for Ω > ω0 as the real part of p− is positive. Physically,
the negative stiffness term −mΩ2 induced by centrifugal forces exceeds the spring stiffness k.
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In the rest of this study, rotational speeds smaller than the undamped natural frequency of the system are
assumed (Ω < ω0).

(a) Real Part (b) Imaginary Part

Figure 2: Campbell Diagram : Evolution of the complex and real parts of the system’s poles as a function of
the rotational speed Ω

Looking at the transfer function matrix Gd in Eq. (7), one can see that the two diagonal (direct) terms are
equal and the two off-diagonal (coupling) terms are opposite. The bode plot of these two terms are shown
in Figure 3 for several rotational speeds Ω. These plots confirm the expected behavior: the frequency of the
two pairs of complex conjugate poles are further separated as Ω increases. For Ω > ω0, the low frequency
pair of complex conjugate poles p− becomes unstable.

(a) Direct Terms du/Fu, dv/Fv (b) Coupling Terms dv/Fu, −du/Fv

Figure 3: Bode Plots for Gd for several rotational speed Ω
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3 Decentralized Integral Force Feedback

In order to apply IFF to the system, force sensors are added in series with the two actuators (Figure 4). As
this study focuses on decentralized control, two identical controllers KF are used to feedback each of the
sensed force to its associated actuator and no attempt is made to counteract the interactions in the system.
The control diagram is schematically shown in Figure 5.
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•

k

k
KF fu

Fu
−

KF

fv

Fv

−

~ix

~iy

~iz

~iw

~iu

~iv

θ
•

Ω

Figure 4: System with added Force Sensor in series
with the actuators

KF

Gf

KF

KF

Fu

−
Fv

−

fu

fv

Figure 5: Control Diagram for decentralized IFF

The forces
[
fu fv

]
measured by the two force sensors represented in Figure 4 are equal to

[
fu
fv

]
=

[
Fu
Fv

]
− (cs+ k)

[
du
dv

]
(10)

Inserting (7) into (10) yields
[
fu
fv

]
= Gf

[
Fu
Fv

]
(11)

Gf =




(
s2

ω0
2− Ω2

ω0
2

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+
(

2 Ω
ω0

s
ω0

)2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

−
(

2ξ s
ω0

+1
)(

2 Ω
ω0

s
ω0

)

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

(
2ξ s

ω0
+1

)(
2 Ω
ω0

s
ω0

)

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

(
s2

ω0
2− Ω2

ω0
2

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+
(

2 Ω
ω0

s
ω0

)2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2




(12)

The zeros of the diagonal terms of Gf are equal to (neglecting the damping for simplicity)

zc = ±jω0

√√√√1

2

√
8

Ω2

ω0
2

+ 1 +
Ω2

ω0
2

+
1

2
(13a)

zr = ±ω0

√√√√1

2

√
8

Ω2

ω0
2

+ 1− Ω2

ω0
2
− 1

2
(13b)

The frequency of the pair of complex conjugate zeros zc (13a) always lies between the frequency of the two
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pairs of complex conjugate poles p− and p+ (9).

For non-null rotational speeds, two real zeros zr (13b) appear in the diagonal terms inducing a non-minimum
phase behavior. This can be seen in the Bode plot of the diagonal terms (Figure 6) where the low frequency
gain is no longer zero while the phase stays at 180°.

The low frequency gain of Gf increases with the rotational speed Ω

lim
ω→0
|Gf (jω)| =

[
Ω2

ω0
2−Ω2 0

0 Ω2

ω0
2−Ω2

]
(14)

This can be explained as follows: a constant force Fu induces a small displacement of the mass du = Fu
k−mΩ2 ,

which increases the centrifugal force mΩ2du = Ω2

ω0
2−Ω2Fu which is then measured by the force sensors.

Figure 6: Bode plot of the dynamics from a force actuator to its collocated force sensor (fu/Fu, fv/Fv) for
several rotational speeds Ω

The two IFF controllers KF consist of a pure integrator

KF (s) =

[
KF (s) 0

0 KF (s)

]
, KF (s) = g · 1

s
(15)

where g is a scalar representing the gain of the controller.

In order to see how the IFF affects the poles of the closed loop system, a Root Locus plot (Figure 7) is
constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller
gain g varies from 0 to∞ for the two controllers KF simultaneously. As explained in [3, 4], the closed-loop
poles start at the open-loop poles (shown by ) for g = 0 and coincide with the transmission zeros (shown
by ) as g →∞. The direction of increasing gain is indicated by arrows .

Whereas collocated IFF is usually associated with unconditional stability [5], this property is lost as soon as
the rotational speed in non-null due to gyroscopic effects. This can be seen in the Root Locus plot (Figure
7) where the poles corresponding to the controller are bound to the right half plane implying closed-loop
system instability.

Physically, this can be explain like so: at low frequency, the loop gain is very large due to the pure integrators
in KF . The control system is thus canceling the spring forces which makes the suspended platform no able
to hold the payload against centrifugal forces, hence the instability.

Prel
im

ina
ry

pro
ce

ed
ing

s

IS
M

A-U
SD

20
20

6 PRELIMINARY PROCEEDINGS OF ISMA2020 AND USD2020



Figure 7: Root Locus: evolution of the closed-loop poles with increasing controller gains g

In order to apply decentralized IFF on rotating platforms, two solutions are proposed to deal with this insta-
bility problem. The first one consists of slightly modifying the control law (Section 4) while the second one
consists of adding springs in parallel with the force sensors (Section 5).

4 Integral Force Feedback with High Pass Filter

As was explained in the previous section, the instability comes in part from the high gain at low frequency
caused by the pure integrators.

In order to limit this low frequency controller gain, an high pass filter (HPF) can be added to the controller

KF (s) = g · 1

s
· s/ωi

1 + s/ωi︸ ︷︷ ︸
HPF

= g · 1

s+ ωi
(16)

This is equivalent to slightly shifting the controller pole to the left along the real axis.

This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator
[5]. This is however not the case in this study as it will become clear in the next section.

The loop gains, KF (s) times the direct dynamics fu/Fu, with and without the added HPF are shown in
Figure 8. The effect of the added HPF limits the low frequency gain as expected.

The Root Loci for the decentralized IFF with and without the HPF are displayed in Figure 9. With the added
HPF, the poles of the closed loop system are shown to be stable up to some value of the gain gmax

gmax = ωi

(
ω0

2

Ω2
− 1

)
(17)

It is interesting to note that gmax also corresponds to the gain where the low frequency loop gain (Figure 8)
reaches one.
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Figure 8: Modification of the loop gain with the
added HFP, g = 2, ωi = 0.1ω0 and Ω = 0.1ω0

Figure 9: Modification of the Root Locus with the
added HPF, ωi = 0.1ω0 and Ω = 0.1ω0

Two parameters can be tuned for the modified controller (16): the gain g and the pole’s location ωi. The
optimal values of ωi and g are here considered as the values for which the damping of all the closed-loop
poles are simultaneously maximized.

In order to visualize how ωi does affect the attainable damping, the Root Loci for several ωi are displayed in
Figure 10. It is shown that even though small ωi seem to allow more damping to be added to the suspension
modes, the control gain g may be limited to small values due to (17).

Figure 10: Root Locus for several HPF cut-off frequencies ωi, Ω = 0.1ω0

In order to study this trade off, the attainable closed-loop damping ratio ξcl is computed as a function of
ωi/ω0. The gain gopt at which this maximum damping is obtained is also displayed and compared with the
gain gmax at which the system becomes unstable (Figure 11).

Three regions can be observed:

• ωi/ω0 < 0.02: the added damping is limited by the maximum allowed control gain gmax

• 0.02 < ωi/ω0 < 0.2: the attainable damping ratio is maximized and is reached for g ≈ 2

• 0.2 < ωi/ω0: the added damping decreases as ωi/ω0 increases
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Figure 11: Attainable damping ratio ξcl as a function of ωi/ω0. Corresponding control gain gopt and gmax are
also shown

5 Integral Force Feedback with Parallel Springs

In this section additional springs in parallel with the force sensors are added to counteract the negative
stiffness induced by the rotation. Such springs are schematically shown in Figure 12 where ka is the stiffness
of the actuator and kp the stiffness in parallel with the actuator and force sensor.

Amplified piezoelectric stack actuators can also be used for such purpose where a part of the piezoelectric
stack is used as an actuator while the rest is used as a force sensor [6]. The parallel stiffness kp then
corresponds to the amplification structure. An example of such system is shown in Figure 13.

Rotating Stage

Suspended Platform

Payload

fu

fv

Fu

ka

kp

Fv

ka
kp

~ix

~iy

~iz

~iw

~iu

~iv

θ
•

Ω

Figure 12: Studied system with additional springs in
parallel with the actuators and force sensors

Figure 13: XY Piezoelectric Stage (XY25XS from
Cedrat Technology)

The forces
[
fu fv

]
measured by the two force sensors represented in Figure 12 are equal to

[
fu
fv

]
=

[
Fu
Fv

]
− (cs+ ka)

[
du
dv

]
(18)

In order to keep the overall stiffness k = ka + kp constant, thus not modifying the open-loop poles as kp is
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changed, a scalar parameter α (0 ≤ α < 1) is defined to describe the fraction of the total stiffness in parallel
with the actuator and force sensor

kp = αk, ka = (1− α)k (19)

The equations of motion are derived and transformed in the Laplace domain
[
fu
fv

]
= Gk

[
Fu
Fv

]
(20)

Gk =




(
s2

ω0
2− Ω2

ω0
2 +α

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+
(

2 Ω
ω0

s
ω0

)2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

−
(

2ξ s
ω0

+1−α
)(

2 Ω
ω0

s
ω0

)

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

(
2ξ s

ω0
+1−α

)(
2 Ω
ω0

s
ω0

)

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2

(
s2

ω0
2− Ω2

ω0
2 +α

)(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)
+
(

2 Ω
ω0

s
ω0

)2

(
s2

ω0
2 +2ξ s

ω0
+1− Ω2

ω0
2

)2
+
(

2 Ω
ω0

s
ω0

)2




(21)

Comparing Gk (21) with Gf (12) shows that while the poles of the system are kept the same, the zeros of the
diagonal terms have changed. The two real zeros zr (13b) that were inducing non-minimum phase behavior
are transformed into complex conjugate zeros if the following condition hold

α >
Ω2

ω0
2
⇔ kp > mΩ2 (22)

Thus, if the added parallel stiffness kp is higher than the negative stiffness induced by centrifugal forcesmΩ2,
the direct dynamics from actuator to force sensor will show minimum phase behavior. This is confirmed by
the Bode plot of the direct dynamics in Figure 14.

Figure 15 shows Root Loci plots for kp = 0, kp < mΩ2 and kp > mΩ2 whenKF is a pure integrator (15). It
is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop
system stay in the (stable) right half-plane, and hence the unconditional stability of IFF is recovered.

Figure 14: Bode Plot of fu/Fu without paral-
lel spring, with parallel springs with stiffness
kp < mΩ2 and kp > mΩ2, Ω = 0.1ω0

Figure 15: Root Locus for IFF without parallel spring,
with parallel springs with stiffness kp < mΩ2 and kp >
mΩ2, Ω = 0.1ω0

Even though the parallel stiffness kp has no impact on the open-loop poles (as the overall stiffness k stays
constant), it has a large impact on the transmission zeros. Moreover, as the attainable damping is generally
proportional to the distance between poles and zeros [7], the parallel stiffness kp is foreseen to have a large
impact on the attainable damping.

To study this effect, Root Locus plots for several parallel stiffnesses kp > mΩ2 are shown in Figure 16.
The frequencies of the transmission zeros of the system are increasing with the parallel stiffness kp and the
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associated attainable damping is reduced. Therefore, even though the parallel stiffness kp should be larger
than mΩ2 for stability reasons, it should not be taken too high as this would limit the attainable bandwidth.

This is confirmed in Figure 17 where the attainable closed-loop damping ratio ξcl and the associated control
gain gopt are computed as a function of α.

Figure 16: Comparison the Root Locus for three
parallel stiffnessses kp

Figure 17: Optimal Damping Ratio ξopt and the cor-
responding optimal gain gopt as a function of α

6 Comparison and Discussion

Two modifications to adapt the IFF control strategy to rotating platforms have been proposed in Sections
4 and 5. These two methods are now compared in terms of added damping, closed-loop compliance and
transmissibility.

For the following comparisons, the cut-off frequency for the HPF is set to ωi = 0.1ω0 and the stiffness of
the parallel springs is set to kp = 5mΩ2.

Figure 18 shows the Root Loci for the two proposed IFF modifications. While the two pairs of complex
conjugate open-loop poles are identical for both techniques, the transmission zeros are not. This means that
the closed-loop behavior of both systems will differ when large control gains are used.

One can observe that the closed loop poles of the system with added springs (in red) are bounded to the
left half plane implying unconditional stability. This is not the case for the system where the controller is
augmented with an HPF (in blue).

It is interesting to note that the maximum added damping is very similar for both techniques and is reached
for the same control gain gopt ≈ 2ω0.

The two proposed techniques are now compared in terms of closed-loop transmissibility and compliance.

The transmissibility is defined as the transfer function from the displacement of the rotating stage to the dis-
placement of the payload. It is used to characterize how much vibration is transmitted through the suspended
platform to the payload.

The compliance describes the displacement response of the payload to external forces applied to it. This is a
useful metric when disturbances are directly applied to the payload.

The two techniques are also compared with passive damping (Figure 1) where the damping coefficient c is
tuned to critically damp the resonance when the rotating speed is null.

ccrit = 2
√
km (23)
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Figure 18: Root Locus for the two proposed modifications of decentralized IFF, Ω = 0.1ω0

Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility (Figure
19a) and compliance (Figure 19b). It is also confirmed that these two techniques can significantly damp the
suspension modes.

(a) Transmissibility (b) Compliance

Figure 19: Comparison of the two proposed Active Damping Techniques, Ω = 0.1ω0

On can see in Figure 19a that the problem of the degradation of the transmissibility at high frequency when
using passive damping techniques is overcome by the use of IFF.

The addition of the HPF or the use of the parallel stiffness permit to limit the degradation of the compliance
as compared with classical IFF (Figure 19b).
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7 Conclusion

Due to gyroscopic effects, decentralized IFF with pure integrators was shown to be unstable when applied
to rotating platforms. Two modifications of the classical IFF control have been proposed to overcome this
issue.

The first modification concerns the controller and consists of adding an high pass filter to the pure integrators.
This is equivalent as to moving the controller pole to the left along the real axis. This renders the closed loop
system stable up to some value of the controller gain gmax.

The second proposed modification concerns the mechanical system. Additional springs are added in parallel
with the actuators and force sensors. It was shown that if the stiffness kp of the additional springs is larger
than the negative stiffness mΩ2 induced by centrifugal forces, the classical decentralized IFF regains its
unconditional stability property.

While having very different implementations, both proposed modifications are very similar when it comes to
the attainable damping and the obtained closed loop system behavior.

Future work will focus on the experimental validation of the proposed active damping techniques.

The Matlab code that was used for this study is available under a MIT License and archived in Zenodo [8].
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