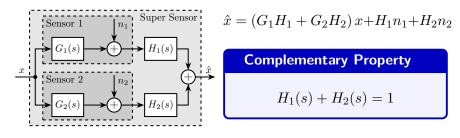
Complementary Filters Shaping Using \mathcal{H}_{∞} Synthesis

Dehaeze Thomas^{1,2,†} Vermat Mohit ² Collette Christophe ²

¹European Synchrotron Radiation Facility, Grenoble, France ²Precision Mechatronics Laboratory, Brussels, Belgium † Email: thomas.dehaeze@esrf.fr

08-11-2019

Motivation - Sensor Fusion Architecture



Let's first consider **Perfectly Known Sensor Dynamics**:

$$G_1(s) = G_2(s) = 1 \Longrightarrow \left[\hat{x} = x + H_1 n_1 + H_2 n_2 \right]$$

We need a synthesis method of complementary filter that allows to **shape the norm of the generated filters**.

Shaping of Complementary Filters using \mathcal{H}_{∞} synthesis

Design Objective

$$H_1(s) + H_2(s) = 1$$

$$|H_1(j\omega)| \le \frac{1}{|W_1(j\omega)|} \quad \forall \omega$$

$$|H_2(j\omega)| \le \frac{1}{|W_2(j\omega)|} \quad \forall \omega$$

\mathcal{H}_{∞} Synthesis

Find $H_2(s)$ such that:

$$\begin{aligned} \left\| \begin{bmatrix} 1 - H_2(s) \end{bmatrix} W_1(s) \right\|_{\infty} &\leq 1 \\ H_2(s) W_2(s) & \right\|_{\infty} &\leq 1 \\ H_1(s) &\triangleq 1 - H_2(s) \end{aligned}$$

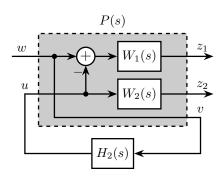


Figure: \mathcal{H}_{∞} Architecture used for the shaping of complementary filters

Results - \mathcal{H}_{∞} Synthesis of Complementary filters

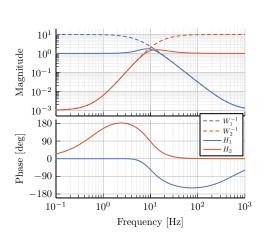


Figure: Frequency response of the weighting functions and complementary filters obtained using \mathcal{H}_{∞} synthesis

Poster TF1-114

