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Abstract—For many applications, large bandwidth and dy-
namic ranges are requiring to use several sensors, whose signals
are combined using complementary filters. This paper presents
a method for designing these complementary filters using H∞
synthesis that allows to shape the filter norms. This method
is shown to be easily applicable for the synthesis of complex
complementary filters.

Index Terms—Complementary Filters, Sensor Fusion, H-
Infinity Synthesis

I. INTRODUCTION

A set of filters is said to be complementary if the sum
of their transfer functions is equal to one at all frequencies.
These filters are used when two or more sensors are measuring
the same physical quantity with different noise characteristics.
Unreliable frequencies of each sensor are filtered out by the
complementary filters and then combined to form a super
sensor giving a better estimate of the physical quantity over a
wider bandwidth. This technique is called sensor fusion and
is used in many applications.

In [1–3], various sensors (accelerometers, gyroscopes, vi-
sion sensors, etc.) are merged using complementary filters for
the attitude estimation of Unmanned Aerial Vehicles (UAV).
In [4], several sensor fusion configurations using different
types of sensors are discussed in order to increase the control
bandwidth of active vibration isolation systems. Furthermore,
sensor fusion is used in the isolation systems of the Laser In-
terferometer Gravitational-Wave Observator (LIGO) to merge
inertial sensors with relative sensors [5], [6].

As the super sensor noise characteristics largely depend
on the complementary filter norms, their proper design is of
primary importance for sensor fusion. In [2], [3], [7], first and
second order analytical formulas of complementary filters have
been presented. Higher order complementary filters have been
used in [1], [4], [8]. In [7], the sensitivity and complementary
sensitivity transfer functions of a feedback architecture have
been proposed to be used as complementary filters. The design
of such filters can then benefit from the classical control
theory developments. Linear Matrix Inequalities (LMIs) are
used in [9] for the synthesis of complementary filters satisfying
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some frequency-like performance. Finally, a synthesis method
of high order Finite Impulse Response (FIR) complementary
filters using convex optimization has been developed in [6],
[10].

Although many design methods of complementary filters
have been proposed in the literature, no simple method that
allows to shape the norm of the complementary filters is
available. This paper presents a new design method of com-
plementary filters based on H∞ synthesis. This design method
permits to easily shape the norms of the generated filters.

The section II gives a brief overview of sensor fusion
using complementary filters and explains how the typical
requirements for such fusion can be expressed as upper bounds
on the filters norms. In section III, a new design method for
the shaping of complementary filters using H∞ synthesis is
proposed. In section IV, the method is used to design complex
complementary filters that are used for sensor fusion at the
LIGO. Our conclusions are drawn in the final section.

II. COMPLEMENTARY FILTERS REQUIREMENTS

A. Sensor Fusion Architecture

Let’s consider two sensors measuring the same physical
quantity x with dynamics G1(s) and G2(s), and with uncor-
related noise characteristics n1 and n2.

The signals from both sensors are fed into two complemen-
tary filters H1(s) and H2(s) and then combined to yield an
estimate x̂ of x as shown in Fig. 1.

x̂ = (G1H1 +G2H2)x+H1n1 +H2n2 (1)

The complementary property of H1(s) and H2(s) implies
that their transfer function sum is equal to one at all frequen-
cies (2).

H1(s) +H2(s) = 1 (2)

B. Noise Sensor Filtering

Let’s first consider sensors with perfect dynamics

G1(s) = G2(s) = 1 (3)

The estimate x̂ is then described by

x̂ = x+H1n1 +H2n2 (4)
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Fig. 1. Sensor fusion architecture

From (4), the complementary filters H1(s) and H2(s) are
shown to only operate on the sensor’s noise. Thus, this sensor
fusion architecture permits to filter the noise of both sensors
without introducing any distortion in the physical quantity to
be measured.

Let’s define the estimation error δx by (5).

δx , x̂− x = H1n1 +H2n2 (5)

As shown in (6), the Power Spectral Density (PSD) of the
estimation error Φδx depends both on the norm of the two
complementary filters and on the PSD of the noise sources
Φn1 and Φn2 .

Φδx = |H1|2 Φn1 + |H2|2 Φn2 (6)

Usually, the two sensors have high noise levels over distinct
frequency regions. In order to lower the noise of the super
sensor, the value of the norm |H1| has to be lowered when
Φn1

is larger than Φn2
and that of |H2| lowered when Φn2

is
larger than Φn1 .

C. Robustness of the Fusion

In practical systems the sensor dynamics is not perfect and
(3) is not verified. In such case, one can use an inversion filter
Ĝ−1i (s) to normalize the sensor dynamics, where Ĝi(s) is an
estimate of the sensor dynamics Gi(s). However, as there is
always some level of uncertainty on the dynamics, it cannot
be perfectly inverted and Ĝ−1i (s)Gi(s) 6= 1.

Let’s represent the resulting dynamic uncertainty of the in-
verted sensors by an input multiplicative uncertainty as shown
in Fig. 2 where ∆i is any stable transfer function satisfying
|∆i(jω)| ≤ 1, ∀ω, and |wi(s)| is a weight representing the
magnitude of the uncertainty.

The super sensor dynamics (7) is no longer equal to 1
and now depends on the sensor dynamics uncertainty weights
wi(s) as well as on the complementary filters Hi(s).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (7)

The uncertainty region of the super sensor can be repre-
sented in the complex plane by a circle centered on 1 with a
radius equal to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| as shown
in Fig. 3.
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Fig. 2. Sensor fusion architecture with sensor dynamics uncertainty
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Fig. 3. Uncertainty region of the super sensor dynamics in the complex plane
(solid circle). The contribution of both sensors 1 and 2 to the uncertainty are
represented respectively by a dotted and a dashed circle

The maximum phase added ∆φ(ω) by the super sensor
dynamics at frequency ω is then

∆φ(ω) = arcsin
(
|w1(jω)H1(jω)|+ |w2(jω)H2(jω)|

)
(8)

As it is generally desired to limit the maximum phase added
by the super sensor, H1(s) and H2(s) should be designed such
that (9) is satisfied.

max
ω

(
|w1H1|+ |w2H2|

)
< sin (∆φmax) (9)

where ∆φmax is the maximum allowed added phase.
Thus the norm of the complementary filter |Hi| should be

made small at frequencies where |wi| is large.

III. COMPLEMENTARY FILTERS SHAPING USING H∞
SYNTHESIS

As shown in Sec. II, the performance and robustness of the
sensor fusion architecture depends on the complementary fil-
ters norms. Therefore, the development of a synthesis method
of complementary filters that allows the shaping of their norm
is necessary.

A. Shaping of Complementary Filters using H∞ synthesis

The synthesis objective is to shape the norm of two fil-
ters H1(s) and H2(s) while ensuring their complementary
property (2). This is equivalent as to finding stable transfer



functions H1(s) and H2(s) such that conditions (10) are
satisfied.

H1(s) +H2(s) = 1 (10a)

|H1(jω)| ≤ 1

|W1(jω)|
∀ω (10b)

|H2(jω)| ≤ 1

|W2(jω)|
∀ω (10c)

where W1(s) and W2(s) are two weighting transfer functions
that are chosen to shape the norms of the corresponding filters.

In order to express this optimization problem as a standard
H∞ problem, the architecture shown in Fig. 4 is used where
the generalized plant P is described by (11).z1z2

v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0
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Fig. 4. Architecture used for H∞ synthesis of complementary filters

The H∞ filter design problem is then to find a stable filter
H2(s) which based on v, generates a signal u such that the
H∞ norm from w to [z1, z2] is less than one (12).∥∥∥∥[1−H2(s)]W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (12)

This is equivalent to having (13) by defining H1(s) as the
complementary filter of H2(s) (14).∥∥∥∥H1(s)W1(s)

H2(s)W2(s)

∥∥∥∥
∞
≤ 1 (13)

H1(s) , 1−H2(s) (14)

The complementary condition (10a) is ensured by (14). The
conditions (10b) and (10c) on the filters shapes are satisfied by
(13). Therefore, all the conditions (10) are satisfied using this
synthesis method based on H∞ synthesis, and thus it permits
to shape complementary filters as desired.

B. Weighting Functions Design

The proper design of the weighting functions is of primary
importance for the success of the presented complementary
filters H∞ synthesis.

First, only proper, stable and minimum phase transfer func-
tions should be used. Second, the order of the weights should

stay reasonably small in order to reduce the computational
costs associated with the solving of the optimization problem
and for the physical implementation of the filters (the order of
the synthesized filters being equal to the sum of the weighting
functions order). Third, one should not forget the fundamental
limitations imposed by the complementary property (2). This
implies for instance that |H1(jω)| and |H2(jω)| cannot be
made small at the same time.

When designing complementary filters, it is usually desired
to specify the slope of the filter, its crossover frequency and
its gain at low and high frequency. To help with the design of
the weighting functions such that the above specification can
be easily expressed, the following formula is proposed.

W (s) =


1
ω0

√
1−(G0

Gc
)

2
n
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2
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(
1
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n


n

(15)

The parameters permit to specify:
• the low frequency gain: G0 = limω→0|W (jω)|
• the high frequency gain: G∞ = limω→∞|W (jω)|
• the absolute gain at ω0: Gc = |W (jω0)|
• the absolute slope between high and low frequency: n
The parameters G0, Gc and G∞ should either satisfy

condition (16a) or (16b).

G0 < 1 < G∞ and G0 < Gc < G∞ (16a)
G∞ < 1 < G0 and G∞ < Gc < G0 (16b)

The general shape of a weighting function generated using
(15) is shown in Fig. 5.
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Fig. 5. Magnitude of a weighting function generated using the proposed
formula (15), G0 = 1e−3, G∞ = 10, ωc = 10Hz, Gc = 2, n = 3

C. Validation of the proposed synthesis method

Let’s validate the proposed design method of complemen-
tary filters with a simple example where two complementary
filters H1(s) and H2(s) have to be designed such that:
• the merging frequency is around 10 Hz
• the slope of |H1(jω)| is −2 above 10 Hz
• the slope of |H2(jω)| is +3 below 10 Hz



• the gain of both filters is equal to 10−3 away from the
merging frequency

The weighting functions W1(s) and W2(s) are designed
using (15). The parameters used are summarized in table I
and the magnitude of the weighting functions is shown in Fig.
6.

TABLE I
PARAMETERS USED FOR W1(s) AND W2(s)

Parameter W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc [Hz] 11 10
Gc 0.5 0.5
n 2 3

The bode plots of the obtained complementary filters are
shown in Fig. 6 and their transfer functions in the Laplace
domain are given below.

H1(s) =
10−8(s+ 6.6e9)(s+ 3450)2(s2 + 49s+ 895)

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)

H2(s) =
(s+ 6.6e4)(s+ 160)(s+ 4)3

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
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Fig. 6. Frequency response of the weighting functions and complementary
filters obtained using H∞ synthesis

D. Synthesis of Three Complementary Filters
Some applications may require to merge more than two

sensors. In such a case, it is necessary to design as many com-
plementary filters as the number of sensors used. The synthesis
problem is then to compute n stable transfer functions Hi(s)
such that (17) is satisfied.

n∑
i=0

Hi(s) = 1 (17a)

|Hi(jω)| < 1

|Wi(jω)|
, ∀ω, i = 1 . . . n (17b)

The synthesis method is generalized here for the synthesis of
three complementary filters using the architecture shown in
Fig. 7.

The H∞ synthesis objective applied on P (s) is to design
two stable filters H2(s) and H3(s) such that the H∞ norm of
the transfer function from w to [z1, z2, z3] is less than one
(18). ∥∥∥∥∥∥

[1−H2(s)−H3(s)]W1(s)
H2(s)W2(s)
H3(s)W3(s)

∥∥∥∥∥∥
∞

≤ 1 (18)
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Fig. 7. Architecture for H∞ synthesis of three complementary filters

By choosing H1(s) , 1 − H2(s) − H3(s), the proposed
H∞ synthesis solves the design problem (17).

An example is given to validate the method where three
sensors are used in different frequency bands (up to 1 Hz, from
1 to 10 Hz and above 10 Hz respectively). Three weighting
functions are designed using (15) and shown by dashed curves
in Fig. 8. The bode plots of the obtained complementary filters
are shown in Fig. 8.
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Fig. 8. Frequency response of the weighting functions and three comple-
mentary filters obtained using H∞ synthesis



IV. APPLICATION: DESIGN OF COMPLEMENTARY FILTERS
USED IN THE ACTIVE VIBRATION ISOLATION SYSTEM AT

THE LIGO

Several complementary filters are used in the active isolation
system at the LIGO [6], [10]. The requirements on those filters
are very tight and thus their design is complex. The approach
used in [10] for their design is to write the synthesis of
complementary FIR filters as a convex optimization problem.
The obtained FIR filters are compliant with the requirements.
However they are of very high order so their implementation
is quite complex.

The effectiveness of the proposed method is demonstrated
by designing complementary filters with the same require-
ments as the one described in [10].

A. Complementary Filters Specifications

The specifications for one pair of complementary filters used
at the LIGO are summarized below (for further details, refer
to [6]) and shown in Fig. 9:

• From 0 to 0.008 Hz, the magnitude of the filter’s transfer
function should be less or equal to 8× 10−4

• Between 0.008 Hz to 0.04 Hz, the filter should attenuate
the input signal proportional to frequency cubed

• Between 0.04 Hz to 0.1 Hz, the magnitude of the transfer
function should be less than 3

• Above 0.1 Hz, the magnitude of the complementary filter
should be less than 0.045

B. Weighting Functions Design

The weighting functions should be designed such that their
inverse magnitude is as close as possible to the specifications
in order to not over-constrain the synthesis problem. However,
the order of each weight should stay reasonably small in order
to reduce the computational costs of the optimization problem
as well as for the physical implementation of the filters.

A Type I Chebyshev filter of order 20 is used as the weight-
ing transfer function wL(s) corresponding to the low pass
filter. For the one corresponding to the high pass filter wH(s),
a 7th order transfer function is designed. The magnitudes of
the weighting functions are shown in Fig. 9.
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C. H∞ Synthesis

H∞ synthesis is performed using the architecture shown in
Fig. 11. The complementary filters obtained are of order 27.
In Fig. 10, their bode plot is compared with the FIR filters of
order 512 obtained in [10]. They are found to be very close
to each other and this shows the effectiveness of the proposed
synthesis method.
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Fig. 10. Comparison of the FIR filters (solid) designed in [10] with the
filters obtained with H∞ synthesis (dashed)

V. CONCLUSION

This paper has shown how complementary filters can be
used to combine multiple sensors in order to obtain a super
sensor. Typical specification on the super sensor noise and
on the robustness of the sensor fusion has been shown to be
linked to the norm of the complementary filters. Therefore, a
synthesis method that permits the shaping of the complemen-
tary filters norms has been proposed and has been successfully
applied for the design of complex filters. Future work will
aim at further developing this synthesis method for the robust
and optimal synthesis of complementary filters used in sensor
fusion.
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