

The European Synchrotron

SAMPLE STABILIZATION FOR TOMOGRAPHY EXPERIMENTS IN PRESENCE OF LARGE PLANT UNCERTAINTY

T. Dehaeze M. Magnin-Mattenet C. Collette

INTRODUCTION – ID31 END STATION

Beam size: down to 200nm using nano focusing optics

X-ray diffraction tomography, reflectivity, Truncation Rod, etc.

Materials science, chemistry, physics, etc.

OUTLINE

SAMPLE STABILIZATION FOR TOMOGRAPHY EXPERIMENTS

- 1. ID31 Positioning End Station
- 2. Multibody Model of the End Station
- 3. Nano Active Stabilization System (NASS)

I. TRANSLATION STAGE

I. TILT STAGE

I. LONG STROKE HEXAPOD

$$-10mm < T_{xyz} < 10mm$$
$$-3^{\circ} < \theta_{xyz} < 3^{\circ}$$

- Crystallographic alignment
- Selection of point of interest

Ζ

6 Legs with:

- One DC Motor
- One absolute encoder

Symétrie

'aı

I. GRAVITY COMPENSATOR SYSTEM

I. THE ID31 MICRO-STATION

Courtesy C. Clavel

II. SIMSCAPE MODEL – MULTIBODY MODEL

We need measurements to tune the model parameters

Why develop such model?

- Study the effect of perturbations
- Influence of *M* on the dynamics
- Study the NASS concept
- Validation: simulations of experiments

Need a model that:

- Represent the dynamics of the system
- Include sources of perturbations and noise

Simscape multibody model:

- Solid bodies connected by spring and dampers
- Includes actuator and sensor
- Ground motion, sensor noise, control noise, etc.

II. DYNAMICAL MEASUREMENTS OF THE MICRO-STATION

CHARACTERIZATION OF EACH STAGE 11.

Measurements on the Spindle

Courtesy HP Van Der Kleij

Precision Engineering Laboratory (PEL)

MIM of the Spindle

angular position [microrad]

Stiffness

-2

-3

The European Synchrotron

160

II. PRECISION - SIMULATION OF TOMOGRAPHY EXPERIMENT

III. THE NANO ACTIVE STABILIZATION SYSTEM (NASS)

6DoF Short Stroke Hexapod

- Voice coil or piezo-stack actuators
- Rough specifications:

Motion	Stroke	Repetability
T_{xyz}	±10 µm	10 nm
θ_{xyz}	±10 µrad	1.7 µrad

6DoF Metrology System (Under Study)

- Interferometric measurement
- Long term stability ($\approx 10nm$ for 8 hours)

Study this concept with the multibody model

III. PLANT IDENTIFICATION

Force applied along x to a displacement along x

Need Robust control techniques

To determine the performances that we can obtain:

- M = 20kg
- $\omega_z = 30 rpm$

SIMULATION OF TOMOGRAPHY EXPERIMENT **III.**

ID31 End-station:

- Versatile: various experiments/sample environment
- In order to obtain a nm precision, a 6DoF active stabilization stage is proposed
- Even with a simple control architecture, the parasitic motions of the sample can be reduced down to 50nm

The NASS could be applied for other positioning stages

To further improve the system:

- Advance control architectures: hybrid feedback/feedforward, HAC/LAC feedback control
- Robust control techniques: H_{∞} control, μ -synthesis, etc.

Thank you for your attention!

Any Questions?

The European Synchrotron

T. Dehaeze thomas.dehaeze@esrf.fr M. Magnin-Mattenet magnin-mattenet@esrf.fr

C. Collette ccollett@ulb.ac.be

Acknowledgements:

- ESRF: V. Honkimaki, L. Ducotte, C. Carole, M. Brendike, M. Lessourd
- PML: A. Jublan

